新闻资讯

注塑成型缺陷分析之浮纤
发布日期:2017-07-07浏览次数:2385Tags:技术文章

介绍:

纤维增强制品浮纤现象比较常见,浮纤现象是玻纤外露造成的,白色的玻纤在塑料熔体充模流动过程中浮露于外表,待冷凝成型后便在塑料件表面形成放射状的白色痕迹,当塑料件为黑色时会因色泽的差异加大而更加明显。 

 

形成原因:

1.在塑料熔体流动过程中,由于玻纤与树脂的流动性有差异,而且密度也不同,使两者具有分离的趋势,密度小的玻纤浮向表面,密度大的树脂沉入内里,于是形成了玻纤外露现象; 

2.塑料熔体在流动过程中受到螺杆、喷嘴、流道及浇口的摩擦剪切作用,会造成局部粘度差异,同时又会破坏玻纤表面的界面层,熔体粘度愈小,界面层受损愈严重,玻纤与树脂之间的粘结力也愈小,当粘结力小到一定程度时,玻纤便会摆脱树脂基体的束缚,逐渐向表面累积而外露; 

3.塑料熔体注入型腔时会形成“喷泉”效应,即玻纤会由内部向外表流动,与型腔表面接触,由于模具型腔表面温度较低,质量轻、冷凝快的玻纤被瞬间冻结,若不能及时被熔体充分包围,就会外露而形成浮纤; 

如何维持玻纤与树脂在成型过程中具有稳定的相容性是改善浮纤现象的关键,而玻纤与树脂稳定的相容性可以通过强化其界面强度和保持玻纤均匀的分散性来实现。生产中无论是采用加入添加剂还是采用合理设计模具结构、优化成型工艺条件的措施,都是基于这个原理。  

 

解决措施: 

1.在材料中加入增容剂、分散剂、润滑剂和防玻纤外露剂等添加剂来改进玻纤和树脂之间的界面相容性,提高分散相和连续相的均匀性,增加界面粘结强度,减少玻纤与树脂的分离,从而改善浮纤现象。其中有的添加剂使用效果较好,但是大多价格不菲,不仅增加了生产成本,而且对材料的力学性能也会有影响; 

 

2.加入短纤或空心玻璃微珠,利用小尺寸的短纤或空心玻璃微珠具有较好流动性和分散性、与树脂之间易于形成稳定界面相容性的特点,实现改善浮纤的目的,尤其是空心玻璃微珠还能降低收缩变形率,避免制品后翘曲,增加材料的硬度和弹性模量,并且价格较低,但不足之处是使材料的冲击性能下降; 

 

3.合理设计模具结构,以玻纤增强PA66为例:针对玻纤增强PA66流动性差,而且玻纤与PA66两种组分流动性不一致的特性,应使其流动距离不能过长,熔体须快速充填型腔,以保证玻纤均匀分散,不发生淤积分层而形成浮纤。因此浇注系统设计的基本原则是流道截面宜大,流程宜平直而短。

 

应采用粗短的主流道、分流道和粗大浇口,浇口可以是薄片式、扇形及环形,亦可采用多浇口形式,以使料流混乱、玻纤扩散并减小取向性。而且要求有良好的排气功能,能及时排出因玻纤表面处理剂挥发产生的气体,以免造成熔接不良、缺料及烧伤等缺陷; 

 

4.优化工艺条件 

(a)提高料筒温度,可使熔体粘度降低,改善流动性,避免填充及熔接不良,而且有利于加大玻纤分散性和减小取向性,获得较低的制品表面粗糙度,但要避免温度过高导致物料氧化和降解; 

 

(b)提高模具温度,有利于提高熔体充模性能、增加熔接痕强度、改善制品表面粗糙度、减小取向和变形。但模具温度愈高,冷却时间愈久,成型周期延长,生产率降低,而且成型收缩率加大,目前有采用变模温技术实现高模温和快速冷却,如采用蒸汽无痕高光注塑技术可有效消除浮纤现象; 

 

(c)适当提高注射压力,较高的注射压力有利于充填,提高玻纤分散性,降低制品收缩率,但会增加剪切应力和取向,容易造成翘曲变形、脱模困难甚至导致溢边问题,因此欲改善浮纤现象,应在稍高于非增强塑料注塑压力的基础上适当加大;

 

(d)通常稍高的背压有助于改善浮纤现象。但过高的背压会对长玻纤产生较大的剪切作用,使熔体易于因过热而降解,导致变色及力学性能变差,因此将背压设置得比非增强塑料略高些即可; 

 

(e)采用较快的注射速度,可使玻纤增强塑料快速充满模腔,玻纤沿流动方向作快速轴向运动,有利于增加玻纤的分散性、减小取向性、提高熔接痕强度和降低制品的表面粗糙度,但要注意避免发生喷射; 

 

(f)降低螺杆转速,以避免摩擦剪切力过大而对玻纤造成伤害,破坏玻纤表面状态,降低玻纤与树脂之间的粘结强度,加剧浮纤现象,特别是当玻纤较长时,会因部分玻纤断裂而出现长短不均现象,造成塑料件各处强度不等、力学性能不稳定。